Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 42(8): 1365-1378, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269374

RESUMO

KEY MESSAGE: DcWRKY5 increases the antioxidant enzyme activity and proline accumulation, oppositely, reduces the accumulation of ROS and MDA, through directly activating the genes expression, finally enhances the salt and drought tolerance. Drought and salinity are two main environmental factors that limit the large-scale cultivation of the medicinal plant Dioscorea composita (D. composita). WRKY transcription factors (TFs) play vital roles in regulating drought and salt tolerance in plants. Nevertheless, the molecular mechanism of WRKY TF mediates drought and salt resistance of D. composita remains largely unknown. Here, we isolated and characterized a WRKY TF from D. composita, namely DcWRKY5, which was localized to the nucleus and bound to the W-box cis-acting elements. Expression pattern analysis showed that it was highly expressed in root and significantly up-regulated in the presence of salt, polyethylene glycol-6000 (PEG-6000) and abscisic acid (ABA). Heterologous expression of DcWRKY5 increased salt and drought tolerance in Arabidopsis, but was insensitive to ABA. In addition, compared with the wild type, the DcWRKY5 overexpressing transgenic lines had more proline, higher antioxidant enzyme (POD, SOD, and CAT) activities, less reactive oxygen species (ROS) and malondialdehyde (MDA). Correspondingly, the overexpression of DcWRKY5 modulated the expression of genes related to salt and drought stresses, such as AtSS1, AtP5CS1, AtCAT, AtSOD1, AtRD22, and AtABF2. Dual luciferase assay and Y1H were further confirmed that DcWRKY5 activate the promoter of AtSOD1 and AtABF2 through directly binding to the enrichment region of the W-box cis-acting elements. These results suggest that DcWRKY5 is a positive regulator of the drought and salt tolerance in D. composita and has potential applications in transgenic breeding.


Assuntos
Arabidopsis , Dioscorea , Dioscorea/genética , Dioscorea/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Secas , Tolerância ao Sal/genética , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Melhoramento Vegetal , Ácido Abscísico/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
2.
Membranes (Basel) ; 13(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37233576

RESUMO

Constructing efficient and continuous transport pathways in membranes is a promising and challenging way to achieve the desired performance in the pervaporation process. The incorporation of various metal-organic frameworks (MOFs) into polymer membranes provided selective and fast transport channels and enhanced the separation performance of polymeric membranes. Particle size and surface properties are strongly related to the random distribution and possible agglomeration of MOFs particles, which may lead to poor connectivity between adjacent MOFs-based nanoparticles and result in low-efficiency molecular transport in the membrane. In this work, ZIF-8 particles with different particle sizes were physically filled into PEG to fabricate mixed matrix membranes (MMMs) for desulfurization via pervaporation. The micro-structures and physi-/chemical properties of different ZIF-8 particles, along with their corresponding MMMs, were systematically characterized by SEM, FT-IR, XRD, BET, etc. It was found that ZIF-8 with different particle sizes showed similar crystalline structures and surface areas, while larger ZIF-8 particles possessed more micro-pores and fewer meso-/macro-pores than did the smaller particles. ZIF-8 showed preferential adsorption for thiophene rather than n-heptane molecules, and the diffusion coefficient of thiophene was larger than that of thiophene in ZIF-8, based on molecular simulation. PEG MMMs with larger ZIF-8 particles showed a higher sulfur enrichment factor, but a lower permeation flux than that found with smaller particles. This might be ascribed to the fact that larger ZIF-8 particles provided more and longer selective transport channels in one single particle. Moreover, the number of ZIF-8-L particles in MMMs was smaller than the number of smaller ones with the same particle loading, which might weaken the connectivity between adjacent ZIF-8-L nanoparticles and result in low-efficiency molecular transport in the membrane. Moreover, the surface area available for mass transport was smaller for MMMs with ZIF-8-L particles due to the smaller specific surface area of the ZIF-8-L particles, which might also result in lower permeability in ZIF-8-L/PEG MMMs. The ZIF-8-L/PEG MMMs exhibited enhanced pervaporation performance, with a sulfur enrichment factor of 22.5 and a permeation flux of 183.2 g/(m-2·h-1), increasing by 57% and 389% compared with the results for pure PEG membrane, respectively. The effects of ZIF-8 loading, feed temperature, and concentration on desulfurization performance were also studied. This work might provide some new insights into the effect of particle size on desulfurization performance and the transport mechanism in MMMs.

3.
Plant Physiol Biochem ; 196: 746-758, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36827956

RESUMO

Dioscorea composita (D. composita) is an important medicinal plant worldwide with high economic value. However, its large-scale cultivation was limited by soil salinization. Identification of genes and their mechanisms of action in response to salt stress are critically important. In the present study, we isolated a classical WRKY transcription factor from D. composita, namely DcWRKY12, and analyzed its function in salt tolerance. Expression pattern analysis showed DcWRKY12 is mainly expressed in roots and significantly induced by NaCl, polyethylene glycol-6000 (PEG-6000), and abscisic acid (ABA). Phenotypic and physiological analyses revealed that heterologous expression of DcWRKY12 enhanced salt and osmotic stress tolerance by increasing antioxidant enzyme activity, osmoregulatory substance content, maintaining relative water content and ion homeostasis, decreasing reactive oxygen species and malondialdehyde content. Correspondingly, the overexpression of DcWRKY12 modulated the expression of salt stress-responsive and ion transport-related genes. Dual luciferase assay and Y1H were further confirmed that DcWRKY12 activates the promoter of AtRCI2A through directly binding to the specific W-box cis-acting elements. These results suggest that DcWRKY12 is a positive regulator of salt tolerance in D. composita and has potential applications in salt stress.


Assuntos
Arabidopsis , Dioscorea , Arabidopsis/genética , Dioscorea/genética , Dioscorea/metabolismo , Tolerância ao Sal , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
ACS Appl Bio Mater ; 5(3): 1210-1221, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35191674

RESUMO

Covalent organic framework nanospheres (COF NSs) have garnered special attention due to their uniform sphere morphology, adjustable particle size, and mesoporous microenvironment. However, methods to control an optimal particle size scale while achieving solution dispersibility and specific surface properties remain underdeveloped, which precludes many of the biomedical applications. Here, we propose and develop a general strategy to access simultaneous size control and surface functionalization of uniform spherical COF NSs in a single step using aspartic acid (d-/l-Asp) that plays center roles in an acid catalyst, hydrophilicity, size-controllable synthesis, and chiral enantiomer. In this study, for the first time, we have employed a surface chemistry engineering study to create a variety of nanoscale spherical COFs and subsequently measure parameters to evaluate the effectiveness of Asp in the regulation of the particle size. Moreover, the potential utilization of the d/l-enantiomeric Asp-COF NSs in preventing ß-amyloid (Aß) aggregation is investigated by analyzing their interactions with Aß amyloids using a multitechnique experimental approach. To our knowledge, our strategy is the first synthesis of hydrophilic COF NSs with an optimal length scale and a chiral-selective targeting surface, which are crucial for the inhibition of Aß fibrillation for Alzheimer's disease prevention.


Assuntos
Estruturas Metalorgânicas , Peptídeos beta-Amiloides , Ácido Aspártico , Estruturas Metalorgânicas/química , Tamanho da Partícula , Propriedades de Superfície
5.
J Plant Physiol ; 269: 153592, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34923363

RESUMO

Dioscorea composita (D. composita) is a perennial dioecious herb with strong biotic and abiotic stress tolerance. However, what roles WRKY transcription factors might play in regulating abiotic stress responses in this medicinal plant is unknown. Here, we isolated DcWRKY3 from D. composita and analyzed its role in stress tolerance. DcWRKY3 is a group I WRKY transcription factor that localized to the nucleus and specifically bound to the W-box cis-elements, but lacked transcriptional activation activity in yeast cells. The expression of DcWRKY3 was strongly affected by salt stress. The heterologous expression of DcWRKY3 strongly enhanced the seed germination rate and root length of Arabidopsis thaliana under salt stress. The DcWRKY3-expressing transgenic lines (DcWRKY3-OEs) also showed higher proline content and antioxidant enzyme activity but lower malondialdehyde and reactive oxygen (ROS) levels compared with the wild type. Moreover, these plants showed upregulated expression of genes related to the salt-stress response and ROS clearance. These findings indicate that DcWRKY3 plays a positive role in the salt-stress response by improving the ROS scavenging ability and maintaining the balance of osmotic pressure in plants. Further studies showed that DcWRKY3 binds to the promoter of AtP5CS1, but not AtSOD and AtRD22, suggesting that DcWRKY3 improves salt tolerance in plants by directly or indirectly regulating the expression of downstream genes. This functional characterization of DcWRKY3 provides new insight into the molecular mechanism underlying the response of D. composita to salt stress.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Dioscorea/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...